A Note On the Connection and Equivalence of Three Sparse Linear Discriminant Analysis Methods
نویسندگان
چکیده
In this paper we reveal the connection and equivalence of three sparse linear discriminant analysis methods: the `1-Fisher’s discriminant analysis proposed in Wu et al. (2008), the sparse optimal scoring proposed in Clemmensen et al. (2011) and the direct sparse discriminant analysis proposed in Mai et al. (2012). It is shown that, for any sequence of penalization parameters, the normalized solutions of direct sparse discriminant analysis equal the normalized solutions of the other two methods at different penalization parameters. A prostate cancer dataset is used to demonstrate the theory.
منابع مشابه
An Efficient Approach to Sparse Linear Discriminant Analysis
We present a novel approach to the formulation and the resolution of sparse Linear Discriminant Analysis (LDA). Our proposal, is based on penalized Optimal Scoring. It has an exact equivalence with penalized LDA, contrary to the multi-class approaches based on the regression of class indicator that have been proposed so far. Sparsity is obtained thanks to a group-Lasso penalty that selects the ...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملGene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملModeling Sparse Generalized Longitudinal Observations With Latent Gaussian Processes
In longitudinal data analysis one frequently encounters non-Gaussian data that are repeatedly collected for a sample of individuals over time. The repeated observations could be binomial, Poisson or of another discrete type or could be continuous. The timings of the repeated measurements are often sparse and irregular. We introduce a latent Gaussian process model for such data, establishing a c...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Technometrics
دوره 55 شماره
صفحات -
تاریخ انتشار 2013